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1. INTRODUCTION

In the sequel, X will always denote a metric space with the metric d, Xo a
fixed point from X, and Ya subset of X such that Xo E Y. IfI is a real-valued
function defined on X, denote

1I/IIy = sup{1 j(x) - j(Y)lld(x, y): x, y E Y, x =I y}. (1.1)

A Lipschitz function on X is a function I: X -->- R such that If/lix < 00.

Denote by Lipo X the Banach space of all Lipschitz functions on X which
vanish at X o , with the norm li/ll = 1I/IIx . Put also

yJ- = U:/E Lipo X,f!y = O}. (1.2)

A Lipschitz extension of a function IE Lipo Y is a function FE Lipo X
such that Fly =/and IIFllx = Il/lly. It is known (see, e.g., [2]) that every
IE Lipo Y has a Lipschitz extension in Lipo X.

For a subset Y of X and x E X we put

d(x, Y) = inf{d(x, y): Y E Y}. (1.3)

Now, let E be a normed linear space, G a nonempty subset of E, x an
element from E, and

PG(x) = {y E G: II x - Y II = d(x, G)}. (1.4)

An element from PG(x) is called a best approximation to x from G. If JI;[ is
a subset of E we say that Gis M-proximinal if PG(x) Ci= 0, for all x EM.
If PG(x) contains exactly one element for every x E lV!, then G is called
M-chebyshevian. If the set G is E-proximinal (respectively E-chebyshevian)
then we say, simply, that G is proximinal (respectively chebyshevian).
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We say that a linear subspace Z of E has the property (U) if every
continuous linear functional on Z has a unique Hahn-Banach extension to E
(i.e., linear and norm preserving) [6]. Let us denote by E* the conjugate space
of E and by ZIL the annihilator of the subspace Z in E*, i.e.,

ZJl = {rp EE*; rp Iz = OJ. (1.5)

Phelps [6] showed that the subspace Z of E has property (U) if and only if
its annihilator Zll is chebyshevian. This result can be extended to Lipschitz
functions:

THEOREM 1 ([5, Lemma 2]). Let X be a metric space, Xo in X, and y r:;;; X
such that Xo E Y. The space Y-'- is chebyshevian for fE Lipo X if and only if
fly E Lipo Y has a unique Lipschitz extension in Lipn X.

We also need the following lemma.

LEMMA 1. Ever)' best approximation to f E Lipo Xfrom Y -'- is of the for/11
f - F, where F is a Lipschitz extension off iy to X.

Proof Suppose F is a Lipschitz extension of fir to X. Then, by [5,
Theorem 2 and Lemma 1], we get

ilf - (f - F)llx = II Flix = ]if::l = d(f, Y-'-).

Conversely, if g E y.L is a best approximation to .f, then ilf - g [Ix =

d(f, P) = 1!f:IY and (f - g) Iy = fir· Therefore F = f - g is a Lipschitz
extension of j Iy •

2. MAIN THEOREM

A metric space X is called uniformly discrete if there exists a number
5 > 0, such that d(x, y) ~ 5 for all x, y E X with x ~ y. The following
theorem appears in [5], in the hypothesis that Y has an accumulation point
in X. The main result is:

THEORE~! 2. Let X, xo, and Y be as in Theorem 1. Suppose,jul'ther, that Y
is nonuniform!y discrete. Ij every fE Lipo Y has a unique Lipschitz extension.
[hen Y = X (or equil'alently P- = {OJ).

Proof Since Y is nonuniformly discrete, for every 11 EN, there exist
x" . J'n E Y, X" *)'" such that d(x", y,,) < lin. Definingj,,: X -> R by

/I = 1. 2, 3.....
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we have
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fn(xo) = 0, n = 1,2,3,... ,

-2d(xn ,Yn) :::;; fn(x n) = -d(xn , Yn) - d(xo , X n) + d(xo ,Yn)

:::;; 0, n = 1,2, 3, ... ,

°:::;; fr,(Yn) = d(xn ,Yn) - d(xo , x n) + d(xo , Yn)

:::;; 2d(xn , Yn), n = 1, 2, 3, ... ,

Ilfn Ilx = sup{! d(x, x n) - d(x, Yn) - dey, x n) + dey, Yn)lfd(x, y):

x, Y E Y, X of= Y} :::;; 2, n = 1,2,3, ... ,

so thatfn E Lipo X for n = 1,2,3,....
Let an = d(xo , Yn) - d(xo ,xn), and suppose that the set I = {n E N:

an :::;; O}isinfinite, say 1= {nj:j EN}. Then, wehavefn.(xo) = O,fn.(xn ,) < 0,
J } ,

fn(Yn.) ?o 0, j = 1, 2, 3,.... Now, we consider the sequence {ifij} of functions
J J

ifij:fn/X) ---+ [0, 1] defined by

ifi;Ct) = 1, t < In/xn),

= 0,

fn/xn) :::;; t < °= fn/xo),

t ?o 0,

for j = 1,2, 3,.... Putting qj = ifij 0 fn , we have,
II qj Ily ?o I ifij(fnjC'n)) - ifij(f"j(Y,,))I/d(xnj , Yn) ?o n;.

By [5, Corollary 2] it follows that

d(x, Y) :::;; (suP{ifi;Cfnj(Y)): y E Y] - infN;Cfn,(Y)): Y E YD/(211 qj Ily)

= 1/(211 qj Ily) :::;; 1/l1j ---+ 0,

so that x E Y, for all x E X, that is Y = X.
By Theorems 1 and 2, we have

COROLLARY 1. Suppose that Y is nonuniformly discrete. Then yJ- is
chebyshevian in Lipo X if and only if P- = {O}.

We can also prove the following result.

THEOREM 3. Let X, Xo , and Y be as in Theorem 1. If(YJ.)l. has the property
(U) then every f E Lipo Y has a unique Lipschitz extension FE Lipo x.

Proof Follows from [8, Corollary 3.1.b)] and the above Theorem 1.

COROLLARY 2. Let X, xo, and Y be as in Theorem 1. Suppose that Y is
nonuniformly discrete. If (YJ.)l. has the property (U), then Y = X (or equiva
lently P- = {OD.
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3. EXAMPLES
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(a) Let X = [0, 1], d(x, Y) = Ix - )' I, X O = 0, and Y = {O, I}. Then
every f E Lipo{O, I} has a unique Lipschitz extension FE Lipo[O, 1], namely,
F(x) = f(1)x. This example shows that the supposition that Y is non
uniformly discrete is essential in Theorem 2.

(h) Let f E Lipo[O, 1] and let Y be the set of points 0 = Xo < Xl <
< X n+1 = 1. Then, we have:

THEOREM 4. The following conditions are equicalent:

(1°) y-t is f-chebyshevian,

(2") Ilfily = [[x"" x"+1 ;/][, k = 0,1,2, ... , n,

where [Xlc-' XHI ;f] = (f(XHl) - f(xlc-))/(x"'rl - Xlc-)'

Proof. (l0J oc> (2°) Obviously,

X E (x" ,Xk+l), k = 0, 1, ... , 11,

(3.1)

is a Lipschitz extension of fl!· and ]Ifil!, ;?: I[x" , Xlc--;-l ;f]I, k = 0, 1, ... , Ii.

Suppose that ko , 0.:;;;; ko < n is such that Ilfliy > I[x,,", XI 0+1 ;fJ. We have
to consider the following cases:

(i) I(X1) < I(Xl:o+l),

(ii) l(x,,-) > l(xl:o+1)'

(iii) I(x,,) = I(X"o+l)'

If condition (i) holds, put ZI = x"u + (/(x"'o+1)- j(xl))/lifi1y and define
the function F1 : [0, 1] --',> R by

F1tx) = L(x).

= j(xl) -'--- U:ly (x - XI)'

= l(xl:o)'

(3.2)

It is easy to see that PI is a Lipschitz extension of f I!" distinct from L,
and then, by Theorem 1, y.L is notf-chebyshevian.

In case (ii) the proof proceeds similarly. If condition (iii) holds, put
Z., = (2x. + XI: -1-1)(3 and define

- [I 0

Flx) = L(x),

= I(xlc-o) +1 fll y (x - x,.),

X E [0, 1] - [x i ·o ' -"1:,,+1].
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Then F2 is a Lipschitz extension of flY, different from L. By Theorem 1,
yJ.. is notf-chebyshevian.

(2°) =? (1°) If I[Xl.; ,XN1 ;f]! = llflly for k = 0,1,2, ... , n, then the
function L defined by (3.1) is the only Lipschitz extension offly.

A consequence of Theorem 4 is:

COROLLARY 3. Let Y be the set ofpoints °= Xo < Xl < ... < xn+l = 1,
fE Lipo[O, 1] and

K = {h: h E Lipo [0, 1], h(Xk) = f(Xk), k = 0,1,2,... ,11 + I}. (3.4)

Then yJ.. is K-chebyshevian if and only if y.L isj-chebyshevian.

(c) Let CI[O, 1] be the space of all continuously differentiable functions
on [0, 1] and let Y be the set of points °= Xo < Xl < ... < xn+l = 1. Put

Z = CI[O, 1] n Lipo[O, 1],

For fE Z, we have

W = CI[O, 1] n P. (3.5)

Ilf[l[o.l] = max{Ij'(x)[: X E [0, I]}.

Let us define the function set S by

S = {h: h E Z, [Xk , Xk+I ; h][Xk+l , Xk+2 ; h]

¥ - II h [I~, k = 0, 1,2,... , n - I}.

We need the following two lemmas:

(3.6)

(3.7)

LEMMA 2. Let [p, q] C R, f(x) = ax + b, a, b E R, a > 0, and )v[ > a.
Then there exists afimction g E C1[p, q] such that f(p) = g(p), f(q) = g(q),
j'(p) = M (f'(q) = M), j'(q) = g'(q) (f'(p) = g'(p)) and max{\ g'(x)!:
XE [p, q]} = M.

Proof. The proof of the lemma is obvious from Fig. 1:

FIGURE 1



APPROXIMATION OF LIPSCHITZ fUNCTIONS

{AC) S1(X) = f(p) + Ivf(x ~ p),

(BC) S2(X) = f(q) - M(x - q),

(DE) S3(X) = fer) - M(x - r), r E (.0, q).
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LEMMA 3. If h E S, then h iy has at least one Lipschitz extension HE Z.

Proof Let h E Sand ko EN, °~ ko < n + 1, such that

(3,8)

By the definition of S, we have

Applying Lemma 2 to the intervals [Xk
o
-1, xkJ and [X"0+1, .'("0-,2], tWlce

it follows that there exists a function H 1 in C1 [Xk
o
_1, Xl:

o
+2] such Ihat

max{1 H1'(x)[: x E [Xko-1, X'.0+2]} = II h Ily and which interpolates the function
h at the points XI: -1 , XI: ,Xk ~1 , Xk +2 •o 0 O' 0

Applying Lemma 2 to the intervals [Xi' Xi+1]' i = 0, 1, ... , k l \ - 2,
ko + 2.... , n, we get a function HE Z. which is a Lipschitz extension of II ;v

to [0, 1].
If [Xl:

o
' X ko+1 ; h] = -I! h Ily we can proceed analogously.

THEOREM 5. The subspace W is S proximinal and for each Ir E S the
following equality holds:

d(h, W) = d(h, Y-'-). (3.9>

Proof. Let h E S. By Lemma 3, h Iy has a Lipschitz extension HE Z.
Then, h - HEW, and this is a best approximation to h, from yJ-.

But then

d(h, P) ~ d(h, rV) ~ II II - (h - H)ilx = d(!?, y.:.),

so that
Ii h - (h - H)llx = d(h, W) = d(h, po).

Remark 1. Let fE Z - S; that is, there exists °~ k 1 < 11 + 1 such
that

In this case, it is possible that no Lipschitz extension to f exists in Z: e.g..
for f(x) = -4x2 + 4x, Y = [0, t. I} we have

[0, t;fm, 1;J] = -4
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and the only Lipschitz extension ofI II' is

F(x) = 2x,

= -2(x - 1),

X E [0, -!),

x E a, 1],

which, obviously, does not belong to Z.
By Lemmas 2 and 3, every h E 5 has a best approximation in W, namely,

h - H, where H is a Lipschitz extension of h, such that HE Z. We can
show that every best approximation is of this form (Lemma 1). It follows that
W is chebyshevian for h E 5 if and only if h II' has a unique Lipschitz extension
in Z. A class of such functions is given by

51 = {h: h E 5, h(XI,') = h(l) Xk , k = 0, 1,2,... ,11 + I}. (3.11)

THEOREM 6. W is 5c chebyshevial1.

Proof If h E 51, then the unique Lipschitz extension of h in Z is
H(x) = h(l)x. Therefore h(x) - h(l)x is the only element of best approxi
mation for h in W.

Remark 2. J. Favard and recently de Boor [1] considered a problem
analogous to that in Example (c).

(d) Finally, let X be a metric space of finite diameter (i.e., sup{d(x, y):
x, y E X} < (0), Xoa fixed element in X, and Ya subset of X such that Xo E Y.
Let IE Lipo X and let G(f) be the set of best approximation to I from P.
We can define on Lipo X the uniform norm II . II,,: Lipo X -->- R by

11/11" = sup{1 f(x)l: x EX}, IE Lipo X. (3.12)

Obviously, the set G(f) C Y~ is closed, convex, and bounded, for every
IE Lipo X. We consider the following problems: Find g*, g* E G(f) such
that

and

III - g* Ilu = inf{!11 - g Ii,,: g E Gun,

III - g* llu = sup{111 - gil,,: g E GU));

(3.13)

(3.14)

i.e., find the nearest and the farthest point to I in G(f), in the uniform norm.
Since every element in G( f) is of the form I - F, where F is a Lipschitz

extension ofIll' it follows that the problems (3.13) and (3.14) are equivalent
to the following problems: Find two Lipschitz extensions F* and F* off II'
such that

and

II F* II" = inf{11 F II,,: F is a Lipschitz extension ofI Iy}

II F* II" = sup{11 FII,,: F is a Lipschitz extension of/lV}.

(3.13')

(3.14')



APPROXIMATION OF LIPSCHITZ FUNCTIONS 229

THEOREM 6. The infimum (3.13) is attained for every g* = f - F., such
that F* is a Lipschitz extension offly andil F* !I" = :lfll,ll lI • The set oflhese
extensions is nonempty.

Proo/ If F is a Lipschitz extension off Iy then

I Flu ~ sup{j F(Y)i:YE Y} = sup{lf(Y)I:Y E Y} = ::fIr I,,·

Therefore. if :1 F* Ilu = Ilf' y II" then inf{11 F . F is a Lipschitz extension of
fly) = :; F* !~" = IJf!y iIu· Now, if F is a Lipschitz extension of f;r. we
define a new Lipschitz function F* by

Fix) = Ilfly II"
= F(x)

=, -:lfh,ll"

if F(x) > :Ifly I'",
if -JI/l y !i" ~ F(x) ~ Y'" ,

if F(x) < -Vll,ll" '

(3.15)

It is easy to see that F* is a Lipschitz extension oflly such that I: F. :1"

U]',,·

THEOREM 7. The supremum (3.14) is attained for f - F1* or i -- F2*
or for both of these functions, where

and

F1 *(x) = inf{[f(y) +lflyd(x.Y)]:YE Y].

F2*(x) = sup{[f(y) -I:fly d(x, y)]: Y E Y}.

(J.16)

(3.17)

Proof By [2], F1* and F2* are Lipschitz extensions off Il' and obviously.
for every Lipschitz extension F off Iy we have

F2*(x) :;:;; F(x) ~ F1*(x), XEX.

From these inequalities, it follows that

IIFil" ~ max(IIF1 * 'I", I'F2 *1u)·

Remark 3. Dunham [3] has considered a problem similar to the problem
in Cd) in the case when GU) has the betweenness property (see [3] for
definition). In (d) the set GU), being convex, has the betweenness property.
We found explicitly the nearest and the farthest points off in G(f).
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